
- 1. Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=18~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t=1,0 с, а модуль ускорения автомобиля при торможении $a=3,6~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- 2. Легковой автомобиль движется по шоссе со скоростью, модуль которой $v = 22 \frac{M}{c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t = 0,80 с, а модуль ускорения автомобиля при торможении $a = 5,0 \frac{M}{c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- 3. Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=30~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя $t=0,60~\rm c$, а модуль ускорения автомобиля при торможении $\rm a=6,0~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- **4.** Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon = 14 \, \frac{\mathrm{M}}{\mathrm{c}}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t = 0,60 с, а модуль ускорения автомобиля при торможении $\mathrm{a} = 5,0 \, \frac{\mathrm{M}}{\mathrm{c}^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- 5. Легковой автомобиль движется по шоссе со скоростью, модуль которой $\upsilon=15~\frac{\rm M}{\rm c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя $t=0.95~\rm c$, а модуль ускорения автомобиля при торможении $\rm a=6.0~\frac{\rm M}{\rm c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- 6. На горизонтальном прямолинейном участке сухой асфальтированной дороги водитель применил экстренное торможение. Тормозной путь автомобиля до полной остановки составил $s=31\,$ м. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,65,$ то модуль скорости υ_0 движения автомобиля в начале тормозного пути равен ... $\frac{M}{c}$.
- 7. Аэросани двигались прямолинейно по замерзшему озеру со скоростью, модуль которой $\upsilon_0 = 9,0 \, \frac{M}{c}$. Затем двигатель выключили. Если коэффициент трения скольжения между полозьями саней и льдом $\mu = 0,050$, то пусть s, который пройдут аэросани до полной остановки, равен ... м.
- **8.** На горизонтальном прямолинейном участке мокрой асфальтированной дороги водитель автомобиля, двигавшегося со скоростью, модуль которой $\upsilon_0=72~\frac{\mathrm{KM}}{\mathrm{q}}$, применил экстренное торможение. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,40$, то тормозной путь s, пройденный автомобилем до полной остановки, равен ... м.
- **9.** На горизонтальном прямолинейном участке сухой асфальтированной дороги водитель применил экстренное торможение. Тормозной путь автомобиля до полной остановки составил $s=43\,$ м. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,3,$ то модуль скорости υ_0 движения автомобиля в начале тормозного пути равен ... $\frac{\rm M}{c}$.
- 10. Автомобиль, двигавшийся со скоростью \vec{v}_0 по прямолинейному горизонтальному участку дороги, начал экстренное торможение. На участке тормозного пути длиной $s=30\,$ м модуль скорости движения автомобиля уменьшился до $\upsilon=10,0\,\frac{\rm M}{\rm c}$. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,50,$ то модуль скорости υ_0 движения автомобиля в начале тормозного пути равен ... $\frac{\rm M}{\rm c}$.
- 11. При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке радиуса R=10 м. Если коэффициент трения $\mu=0,50$, то модуль минимальной скорости υ_{\min} движения мотоциклиста равен ... $\mathbf{m/c}$. Ответ округлите до целых.
- 12. При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке с минимально возможной скоростью, модуль которой $\upsilon_{\min} = 12$ м/с. Если коэффициент трения $\mu = 0,60$, то радиуса R окружности, по которой движется мотоциклист равен ... дм. Ответ округлите до целых.
- 13. При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке радиуса R=12 м. Если коэффициент трения $\mu=0,48$, то модуль минимальной скорости υ_{\min} движения мотоциклиста равен ... м/с. Ответ округлите до целых.
- 14. Камень массой m=0,20 кг бросили с башни в горизонтальном направлении с начальной скоростью, модуль которой $\upsilon_0=20$ $\frac{M}{C}$. Кинетическую энергию $E_{\rm K}=80$ Дж камень будет иметь через промежуток времени Δt после броска, равный ... с.

- **15.** Камень массой m=0,40 кг бросили с башни в горизонтальном направлении с начальной скоростью, модуль которой $\upsilon_0=15$. Кинетическая энергия $E_{\rm K}$ камня через промежуток времени $\Delta t=1,0$ с после броска равна ...Дж.
- **16.** На рисунке приведён график зависимости кинетической энергии E_{κ} тела, движущегося вдоль оси Ox, от координаты x. На участке AB модуль результирующей сил, приложенных к телу, равен ... Н.

